Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Rep ; 37(2): 109806, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1466094

ABSTRACT

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Subject(s)
Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Animals , Benzofurans/pharmacology , Cell Line, Tumor , Eukaryotic Initiation Factor-4A/drug effects , Eukaryotic Initiation Factor-4A/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Primary Cell Culture , Protein Biosynthesis/physiology , Proteomics/methods , Ribosomes/metabolism , Transcriptome/drug effects , Transcriptome/genetics , Triterpenes/pharmacology
2.
Eur J Med Chem ; 203: 112653, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-645168

ABSTRACT

Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
Aglaia/chemistry , Antiviral Agents/therapeutic use , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Eukaryotic Initiation Factor-4A/genetics , Pneumonia, Viral/drug therapy , Repressor Proteins/genetics , Animals , COVID-19 , Eukaryotic Initiation Factor-4A/drug effects , Humans , Medicine, Chinese Traditional , Pandemics , Prohibitins , Repressor Proteins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL